PUBLICATIONS

If you have a publication using MercuryDPM and would like it added to the list, please send an email to info@mercurydpm.org

PUBLICATIONS ABOUT MERCURYDPM

Thornton, Plath, Ostanin, Götz , Bisschop, Hassan, Roeplal, Wang, Pourandi , Weinhart. Recent Advances in MercuryDPM. Mathematics in Computer Science (2023) 17:13.

Weinhart, Orefice, Post, van Schrojenstein Lantman, Denissen, Tunuguntla, Tsang, Cheng, Shaheen, Shi, Rapino, Grannonio, Losacco, Barbosa, Jing, Alvarez Naranjo, Roy, den Otter, Thornton. Fast, flexible particle simulations — An introduction to MercuryDPM. Computer Physics Communications (2019) 107129.

Weinhart, Post, Denissen, Tunuguntla, Grannonio, Losacco, Tsang, Barbosa, Den Otter, Thornton. Fast, flexible particle simulations: an introduction to MercuryDPM. Proceedings of the 8th International Conference on Discrete Element Methods (2019)

Thornton, Post, Orefice, Rapino, Roy, Polman, Shaheen, Alvarez Naranjo, Cheng, Jing, Shi, Mbaziira, Roeplal, Weinhart. Faster, more flexible particle simulations: The future of MercuryDPM. Proceedings of the 8th International Conference on Discrete Element Methods (2019).

Tunuguntla, Weinhart, Thornton. Discrete particle simulations with MercuryDPM. ALERT Doctoral School 2017.

Weinhart, Tunuguntla, van Schrojenstein Lantman, Denissen, Windows-Yule, Polman, Tsang, Jin, Orefice, van der Vaart, Roy, Shi, Pagano, den Breeijen, Scheper, Jarray, Luding, Thornton. MercuryDPM: A fast and flexible particle solver Part B: Applications. Proceedings 5th International Conference on Particle-Based Methods (2017)

Weinhart, Tunuguntla, van Schrojenstein Lantman, van der Horn, Denissen, Windows-Yule, de Jong, Thornton. MercuryDPM: A fast and flexible particle solver Part A: Technical Advances. Proceedings 7th Conference on Discrete Element Methods (2016)

Thornton, Krijgsman, te Voortwis, Ogarko, Luding, Fransen, Gonzalez, Bokhove; Imole, Weinhar. A review of recent work on the Discrete Particle Method at the University of Twente: An introduction to the open- source package MercuryDPM. Proceedings 6th Conference on Discrete Element Methods (2013)

Thornton, Krijgsman, Fransen, Gonzalez, Tunuguntla, te Voortwis, Luding, Bokhove, Weinhart. Mercury-DPM: Fast particle simulations in complex geometries. EnginSoft Year 10, No. 1 (2013).


PUBLICATIONS USING MERCURYDPM


Holger Götz, Thorsten Pöschel, and Olfa D'Angelo Structural features of jammed-granulate metamaterials. Phys. Rev. Research 6, 013061 (2024)

Edgar Ortega-Roano, Mathieu Souzy, Thomas Weinhart, Devaraj van der Meer, and Alvaro Marin. Clogging of noncohesive suspensions through constrictions using an efficient discrete particle solver with unresolved fluid flow. Phys. Rev. E 108, 064905 (2023)

M. J. A. de Munck, E. A. J. F. Peters, and J. A. M. Kuipers CFD-DEM Fluidized Bed Drying Study Using a Coarse-Graining Technique. Industrial & Engineering Chemistry Research 2023 62 (48), 20911-20920 DOI: 10.1021/acs.iecr.3c02960 (2023)

Götz, H., Pöschel, T.  DEM-Simulation of thin elastic membranes interacting with a granulate. Granular Matter (Submitted)

De Munck, M.J.A.,Van Gelder,  J.B. , Peters, E.A.J.F.  and Kuipers, J.A.M. A detailed gas-solid fluidized bed comparison study on CFD-DEM coarse-graining techniques. Chemical Engineering Science, Volume 269, 5 April 2023, 118441

Götz, H., Pöschel, T.  Granular meta-material: Viscoelastic response of a bending beam. Granular Matter. Granular Matter (Submitted)

Fransen, M. P. , Langelaar, M.  Dingena, Schott, L. Including stochastics in metamodel-based DEM model calibration. Powder Technology, 406: 117400 (2022).

Götz, H. Santarossa, A,Sack, A., Pöschel  T., Müller, P. Soft particles reinforce robotic grippers: robotic grippers based on granular jamming of soft particles. Granular Matter 24:31 (2022)

Besten, Marks, Einav,  Reversing and amplifying elastic waves in inelastic granular media. Granular Matter, 24:20 (2022).

Berzi, Vescovi. Cooling after shearing: three possible fates for dense granular materials. Granular Matter, 23:47 (2021).

Taylor-Noonan, Gollin, Bowman, Take. The influence of image analysis methodology on the calculation of granular temperature for granular flows. Granular Matter volume 23:96 (2021)

Salinas, V., Quiñinao, C., González, S. Castillo, G. Triggering avalanches by transverse perturbations in a rotating drum. Sci Rep 11, 13936 (2021). 

Andò, Edward, Marks, Roux.  Single-projection reconstruction technique for positioning monodisperse spheres in 3D with a divergent x-ray beam. Measurement Science and Technology (2021).

Maranic, Zvonimir, Guillard, Baker, Einav, Marks.  A granular thermometer. Granular Matter, 23:2 (2021).

Dulanjalee, Eranga, Guillard, Baker, Einav, Marks. Measuring grain size fractions of bidisperse granular materials using X-ray radiography. Optics Express, 28:20 (2020).

Vescovi, Redaelli, di Prisco. Modelling phase transition in granular materials: From discontinuum to continuum. International Journal of Solids and Structures, 202, 495-510 (2020).

Shi, Roy, Weinhart, Magnanimo, Luding. Steady State Rheology of Homogeneous and Inhomogeneous Cohesive Granular Materials. Granular Matter, 22:14 (2020)

Tsang, Dalziel, Vriend. The granular Blasius problem.  JFM. Volume 872 (2019). 

Roy, Scheper, Polman, Thornton, Tunuguntla, Luding, Weinhart. Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness. European Physical Journal E, 42: 14 (2019) [Appeared on the cover of EPJE].

Pagano, Magnanimo, Weinhart, Tarantino. Exploring the micromechanics of non-active clays via virtual DEM experiments. Geotechnique, in print (2019)

Denissen, Weinhart, te Voortwis, Luding, Gray, Thornton. Bulbous head formation in bidisperse shallow granular flow over an inclined plane. Journal of Fluid Mechanics, 866, 263-297 (2019)

Roy, Luding, Weinhart. Liquid re-distribution in sheared wet granular media. Physical Review E, 98, 052906 (2018)

Baker, James, Guillard, Marks, Einav. X-ray rheography uncovers planar granular flows despite non-planar walls. Nature communications 9:1 (2018).

Vescovi, Berzi, di Prisco. Fluid–solid transition in unsteady, homogeneous, granular shear flows. Granular Matter,  20:27 (2018).

van der Vaart, Thornton, Johnson, Weinhart, Jing, Gajjar, Gray, Ancey. Breaking size-segregation waves and mobility feedback in dense granular avalanches. Granular Matter, 20 3, 46 (2018)

Hidalgo, Szabo, Gillemot, Borzsonyi, Weinhart. Rheological response of nonspherical granular flows down an incline. Phys. Rev. Fluids, 3, 074301 (2018)

vd Vaart, Lantman, Weinhart, Luding, Ancey. Segregation of large particles in dense granular flows: A granular Saffman effect?. Phys. Rev. Fluids, 3, 074303 (2018)

Roy, Luding, Weinhart. A general(ized) local rheology for wet granular materials. New Journal of Physics, 19 (4) 043014 (2017)

Tunuguntla, Thornton, Weinhart. Comparing and contrasting size-based particle segregation models. Computational Particle Mechanics (2016)

Tunuguntla, Thornton, Weinhart. From discrete elements to continuum fields: Extension to bidisperse systems. Computational Particle Mechanics 3(3), 349-365 (2016)

Weinhart, Labra, Luding, Ooi. Influence of coarse-graining parameters on the analysis of DEM simulation results. Powder Technology 293, 138-148 (2016) (Coarse-graining in MercuryDPM)

Imole, Krijgsman, Weinhart, Magnanimo, Edgar, Ramaioli, Luding. Experiments & Discrete Element Simulation of the Dosing of Cohesive Powders. Powder Technology 287, 108-120 (2016)

Vescovi, Luding. Merging fluid and solid granular behavior. Soft Matter, 12, 8616-8628 (2016).

Roy, Singh, Luding, Weinhart. Micro-Macro Transition and Simplified Contact Models for Wet Granular Materials. Computational Particle Mechanics 3(4), 449-462 (2016)

Marks, Benjy, Sandnes, Dumazer, Eriksen, Måløy. Compaction of granular material inside confined geometries. Frontiers in physics 3 (2015)

Eriksen, Alm, Marks, Sandnes, Toussaint. Bubbles breaking the wall: Two-dimensional stress and stability analysis. Physical Review 91:5 (2015).

Windows-Yule, C.R.K. and Parker, D. Density-driven segregation in binary and ternary granular system. KONA Powder and Particle Journal (2015)

Windows-Yule, C.R.K., Douglas, G.J.M. and Parker, D. Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular system. Physical Review E (2015)

Krijgsman, D., Ogarko, V. and Luding, S. Optimal parameters for a hierarchical grid data structure for contact detection in arbitrarily polydisperse particle systems. Computational Particle Mechanics, 1 No. 3 (2014)

Tunuguntla, D. R., Bokhove, O. and Thornton, A. R. A mixture theory for size and density segregation in shallow free-surface granular flows. J. Fluid Mech. 749, 99-112 (2014)

Windows-Yule, C.R.K., Weinhart, T., Parker, D. and Thornton, A.R. Effects of Packing Density on the Segregative Behaviors of Granular Systems. PRL 112, 098001 (2014).

Windows-Yule, C.R.K., Weinhart, T., Parker, D. and Thornton, A.R. Influence of thermal convection on density segregation in a vibrated binary granular system. PRE 89, 022202 (2014)

Windows-Yule, C. R. K., Rosato, A. D., Rivas, N., & Parker, D. J. Influence of initial conditions on granular dynamics near the jamming transition. New Journal of Physics, 16(6), 063016 (2014)

Windows-Yule, C. R. K., & Parker, D. J. Center of mass scaling in three-dimensional binary granular systems. Physical Review E, 89(6), 062206 (2014)

Windows-Yule, C. R. K., & Parker, D. J. Inelasticity-induced segregation: Why it matters, when it matters. EPL (Europhysics Letters),106(6), 64003 (2014)

Fuchs and Weinhart, Meyer, Zhuang, Staedler, Jiang, Luding. Rolling, sliding and torsion of micron-sized silica particles,. Granular Matter 16(3), 281-297 (2014) (validating contact models used in Mercury)

Thornton, Weinhart, Ogarko, Luding. Multi-scale modeling of multi-component granular materials. Computer Methods in Materials Science 13(2), 1-16 (2013)

Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S. Coarse-grained local and objective continuum description of 3D granular flows down an inclined surface. Phys. Fl. 25, 070605 (2013).

Weinhart, T., Luding, S., Thornton, A.R. From discrete particles to continuum fields in mixtures. AIP Conf. Proc. 1542, 1202-1205 (2013).

Thornton, A.R., Weinhart, T., Luding, S., Bokhove, O. Friction dependence of shallow granular flows from discrete particle simulations. Eur. Phys. J. E 35:127 (2012).

Thornton, A.R., Weinhart, T., Luding, S., Bokhove, O. Modeling of particle size segregation: Calibration using the discrete particle method. Int. J. Mod. Phys. C 23, 1240014 (2012).

Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O. Closure Relations for Shallow Granular Flows from Particle Simulations. Granular Matter 14(4), 531-552 (2012).

Hartkamp, R., Ghosh, A. Weinhart, T. and Luding S. A study of the anisotropy of stress in a fluid confined in a nanochannel. J. Chem. Phys. 137, 044711 (2012). (Note; only uses MercuryCG for data generated in a different simulation package).

Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O. From discrete particles to continuum fields near a boundary. Granular Matter 14(2), 289-294 (2012).


CONFERENCE PROCEEDINGS

Roy, Luding, Weinhart. Effect of cohesion on local compaction and granulation of sheared granular materials. Proc. 8th International Conference on Micromechanics of Granular Media (2017)

Pagano, Tarantino, Pedrotti, Magnanimo, Windows-Yule, Weinhart. Micromechanics of non-active clays in saturated state and DEM modelling. Proc. 8th International Conference on Micromechanics of Granular Media (2017) (Contact model for vd Waals and basic electrostatic forces)

Fuchs, Weinhart, Ye, Luding, Butt, Kappl. The initial stage of polymer particle sintering. Proc. 8th International Conference on Micromechanics of Granular Media (2017) (Contact model for sintering)

Roy, Luding, Weinhart. Macroscopic bulk cohesion and torque for wet granular materials. Proc. 8th Conference for Conveying and Handling of Particulate Solids (2015)

Roy, Luding, Weinhart. Towards hydrodynamic simulations of wet particle systems. Procedia engineering 102, 1531-1538 (2014)


PUBLICATIONS RELEVANT TO MERCURYDPM

MercuryDPM uses the hierarchical grid [1,3], a fast multilevel algorithm, for neighbourhood search and contains an advance coarse-graining toolbox [2].

[1] Vitaliy Ogarko and Stefan Luding. A fast multilevel algorithm for contact detection of arbitrarily polydisperse objects. Computer Physics Communications, 183 (2012) p932-936.

[2] Weinhart, T., Luding, S., Thornton, A.R. From discrete particles to continuum fields in mixtures. AIP Conf. Proc. 1542, 1202-1205 (2013)

[3] Krijgsman, D., Ogarko, V. and Luding, S. Optimal parameters for a hierarchical grid data structure for contact detection in arbitrarily polydisperse particle systems. Computational Particle Mechanics, 1 No. 3 (2014)